
Download free eBooks at bookboon.com

Perl for Beginners

90

Hash tables

17 Hash tables

17.1 Tables indexed by strings

An array is a table of data where the rows are identified by their numerical position in sequence. A hash
table (or “hash” for short), with % rather than @ prefixed to its name, is like an array but the rows are
indexed not by numbers but by character-strings. With a hash, it does not make sense to talk about “the
sixth row” or “the initial row”; but, if we chose to use, say, names of fish as the keys indexing the rows of
a hash, then we could ask what was in the “pike” row or the “mackerel” row.

(The values within the rows of a hash table, like those in the rows of an array, can be any items you like,
numbers or strings; it is the way that rows are identified which creates the contrast between arrays and hashes.)

In an introductory textbook the main difficulty about hashes is not explaining the mechanics of how they work,
but making clear what their point is – why anyone would want to use them. For practical reasons, the
programming examples included in textbooks are normally little “toy” examples; but hashes are most useful
when they contain not just a dozen or two dozen data items but hundreds, or thousands, of rows of data.

So let’s consider an example like that. We shan’t be able to inspect the entire contents of the hash, but we will
see how it is created and, once it exists, how it is used; and because it is a large enough example to be realistic
we will be able (I hope) to see why hashes are a useful thing to have available. Along the way we shall
encounter one or two other, much simpler but important features of Perl that we happen not to have met yet.

As background to our hypothetical hash table, let us suppose that we are interested in the vocabulary of
advertising copy. Perhaps we want to monitor trends in the choice of words used in marketing, so that we
can make our own advertising come over as fresh and up-to-date, or so that we can draw links between the
language of advertising and other social trends. Never mind why exactly we want to study this topic; the
point is that we will suppose we have files containing a mass of examples of advertising copy, and we
want to process these into a table which, for any word found in the files, gives a count of the number of
occurrences of that word.30

The table will be a hash table; we’ll call it %adWords. The words themselves will be the “keys”
indexing the rows of the table; the contents of a row will be the frequency within our data of the word
which is the key of the row. So for instance the bargain row might contain the value 546, meaning that the
word bargain occurred 546 times in the files from which the table was compiled.

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

91

Hash tables

Suppose our program has created a table like %adWords. Then the way to extract an individual data
item such as the one just mentioned will be to use curly brackets round the key, corresponding to square
brackets round a row-number in the case of an array:

print $adWords{"bargain"};

546

The data item is a scalar, so a dollar sign appears at the beginning of $adWords{"bargain"} even
though %adWords as a whole takes the % prefix. By now, this is what we expect in Perl.

Notice that there is no way that we can ask for, say, the contents of row 13 of %adWords. If we wrote
$adWords{"13"} that would give us the frequency of the word 13; and $adWords{13}, or
$adWords[13], would just be errors. We shall see, later, how it is possible to work through each row of
a hash table in turn; it is not done by starting with row 0 and moving on to row 1, row 2, etc. – with a hash
these phrases are meaningless. Hashes are useful in situations where, much of the time, one is looking at
single data items within a large table, rather than working through the entire table.

17.2 Creating a hash

So how would we create the %adWords hash from our text files?

To save time I’ll assume that we have arranged a filehandle so that the expression <INFILE> will read
a line of text in from our data files, until there is nothing left to read in. After reading in any line, we will
want to split it into an array of words separated by spaces (an array, not a hash); and then we’ll work
through the array using the individual words to increment the values in the corresponding rows
of %adWords.

Of course, if we split a line of everyday text on whitespace, the units we get will not all be “words”
exactly – some of them might have punctuation at beginning or end (or both), and indeed some elements
surrounded by whitespace might consist wholly of punctuation (dashes are often written with spaces on
either side). We don’t want, say, bargain! or "bargain (or Bargain) to be counted separately
from bargain, so let’s say that before adding any word into the hash we’ll remove any punctuation
found at either end (and ignore a “word” which contains only punctuation marks), and we’ll reduce all
alphabetic characters to lower case. Also, as with avewordLen() in chapter 16, we’ll ignore words
containing digits – any number can appear in a price, such as 99p or £279, so it would not be very
meaningful to keep count of the prices that happen to occur in our data.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

92

Hash tables

The following code will do to read in the lines of data and get the words ready to add into the hash table;
line 26.11 does the work of actually building the hash table with the help of a user-defined function, which
we shall look at below.

(26)

1 while ($line = <INFILE>)
2 {
3 @words = split(/\s+/, $line);
4 foreach $word (@words)
5 {
6 if ($word =~ m/\w/ and $word !~ m/\d/)
7 {
8 $word =~ s/^\W*(\w)/$1/;
9 $word =~ s/(\w)\W*$/$1/;
10 $word = lc($word);
11 updateAdWords($word);
12 }
13 }
14 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Perl for Beginners

93

Hash tables

Line 26.3 splits an input line into words separated by one or more whitespace characters. Then 26.4–14
work through each element of the resulting array in turn, using $word to refer to the current array item.
Line 26.6 checks that $word contains at least one “word character” and no digit – if it fails these tests,
for instance because it is all punctuation, nothing further will happen in this pass of the foreach loop
(and Perl will move on to consider the next word). Line 26.8 deletes any sequence of nonword characters
at the beginning of $word, and line 26.9 does the same at the end of $word. Line 26.10 reduces any
capitals in the remaining string to lower case. Then 26.12 calls the subroutine updateAdWords(),
which uses $word to update the %adWords hash table.

When a word is used to update %adWords, there are two possibilities: either this is a word
which %adWords has not seen before, in which case a row needs to be created for it in the hash table with
the value 1; or there is already a row for that word, in which case the value in that row needs to be increased by
one. In the definition of the function it is simpler to take those alternatives in the opposite order, using the built-
in function exists() which checks whether a given hash contains a row with a given key:

(27)

1 sub updateAdWords
2 {
3 my $entry = shift(@_);
4 if (exists($adWords{$entry}))
5 {
6 ++ $adWords{$entry};
7 }
8 else
9 {
10 $adWords{$entry} = 1;
11 }
12 }

(Strictly speaking, there is a third possibility: the first time updateAdWords() is called, the
hash %adWords will not yet exist. But as soon as Perl hits 27.10 for the first time, it will
create %adWords without further ado, as well as creating a row for the current word within it.)

And that is all there is to it, so far as creating the hash table is concerned. After (26) has run through all the
data so that <INFILE> has no further lines of text to deliver, %adWords will have a row for each
distinct word in the data; the key of the row will be the word and the value will be the number of times
that word occurs.

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

94

Hash tables

If we want to delete an individual entry from a hash table, the built-in function delete() does this:

delete $adWords{"bargain"};

You might perhaps wonder why hashes have a delete() function but there is no equivalent for arrays.
What would an equivalent do in the case of an array, though? When a table is indexed by row numbers,
one cannot just make row 15 (say) go away – we can remove the contents of the row, but the row will still
be there between rows 14 and 16. With a hash, on the other hand, after the command delete
$adWords{"bargain"} is executed, it is as if %adWords had never had a bargain row in the
first place.

17.3 Working through a hash table

We saw above that the typical use of a hash is to extract the value for an individual key; and we do that by
placing the key within curly brackets. But, sometimes, we do want to work through every entry in a hash
table in turn. As an exercise, we might add up all the values in %adWords entries in order to get a count
of the total number of words (word-tokens) in our data files.

We cannot apply foreach directly to a hash; foreach applies only to arrays. For hashes, there is a
related term each. But each does not mean quite what you might expect; its usage is rather
counterintuitive. If %hash is a hash table, the expression each(%hash) really means “the next
key/value pair in %hash, if there is another one”. So we can go about totalling the values in %adWords
this way:

(28)

1 $total = 0;
2 while (($key, $value) = each(%adWords))
3 {
4 $total += $value;
5 }
6 print "$total\n";

Line 28.2 takes successive key/value pairs from %adWords and makes the members of the pair the
values of the variables $key and $value; $key is not needed, but $value is used to increment
$total.

In 28.2, assigning an array (in this case the two-element array returned by each) to a list of variables
within round brackets is a neat way of making multiple assignments with one equals-sign. We could
alternatively have invented a variable name to contain the successive key/value pairs. That is, we could
have written 28.2 as, say, while (@kvpair = each(%adWords)), in which case line 28.4 would
have needed to become $total += $kvpair[1] (i.e. the second element of @kvpair – the key
is $kvpair[0]). But the way we have done things in (28) seems clearer; there is no point in turning the
key/value pair into an array with a name of its own, rather than a nameless list, unless that array will later
be used in ways that it is not used here.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

95

Hash tables

There are other ways to work through the full set of entries in a hash table. Thus, the built-in functions
keys() and values() return arrays containing respectively all the keys, and all the values, in a hash
named as argument. Since the result of values() is an array, we can use foreach with it:

(29)

1 $total = 0;
2 foreach $value (values(%adWords))
3 {
4 $total += $value;
5 }
6 print $total;

17.4 Advantages of hash tables

We have seen that each returns successive key/value pairs from a hash, and keys() and values()
return the respective items as an array, which is a sequentially ordered structure. So it may seem that I
have misled readers by saying that there is no concept of “position of a row in numerical sequence” for
hash tables. In what order are items delivered by each, keys(), and values()?

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Perl for Beginners

96

Hash tables

The answer is, to all intents and purposes in a random order. Inside the computer the rows of a hash table
must be in some order or other, but there will not be any obvious logic to the order. In particular, the order
of the rows will not reflect the sequence in which entries were added to the hash.

Normally, this book does not “peer under the bonnet” to discuss how programming structures are actually
implemented within the machine. At this level, to do that would commonly be confusing rather than
helpful. In the case of hash tables, though, it may be worth making an exception and explaining just a little
about how they are implemented and why they store elements in an apparently random sequence, in order
to help readers appreciate the “point” of including hashes in a programming language.

If a hash table is large, the process of looking up individual items in it is much more efficient than in the
case of an array. To look up an item in an array, the machine must begin at row zero and inspect
successive rows until the answer is found – on average half of the entire array has to be checked. In a hash,
an item is placed in a row having some arithmetic relationship to its key. For instance, if the hash has 1000
rows available, then to decide which row to use for key X the rule could be to multiply together the ASCII
codes for the characters of X (a = 97, b = 98, etc.) and to use the last three digits of the large resulting
number to place the item – or, if that particular row happens already to be taken for a different key, use the
next empty row. Then, when an item is looked up, by making the calculation on the key string the
machine can usually go straight, or almost straight, to the correct row even in a huge table. For many real-
life applications, this is an important benefit.31

Efficient lookup is probably the most important reason for including hash tables in a programming
language. But also, it can be easier for a programmer to think in terms of tables indexed by meaningful
strings than tables indexed by numbers. Consider again our table of county data. At present, the only
datum included for a county, apart from its name, is its population. But we might want to enlarge the table
to include further numerical information – say, the area of the county in acres, and its property-tax base in
pounds sterling (what back in 1966, the year to which our figures refer, was called “rateable value”). As a
table on paper, its first few lines would look like this:32

 population acreage rateable value (£)

Bedfordshire 427,970 305,089 12,789,675

Berkshire 585,450 463,830 19,770,843

Buckinghamshire 542,020 477,750 29,709,579

Figure 2

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

97

Hash tables

Let’s suppose we have these data in an electronic file countyDataPlus.txt, in a format having one
line per county, no commas in the numbers, and fields separated by the “|” symbol, possibly with
adjacent whitespace.33 In other words the first line of the file might look like this:

Bedfordshire | 427970|305089| 12789675

Then we can read the data into a Perl program using code such as:

(30)

1 while ($line = <INFILE>)
2 {
3 chomp($line);
4 $line =~ s/^\s*(\S.*\S)\s*$/$1/;
5 @items = split(/\s*\|\s*/, $line);
6 ($name, $population, $acreage, $rateable_value) = @items;
7 $name = despace($name);
 ⋮

 }

Line 30.4 will remove any whitespace from beginning and/or end of the line read in, 30.5 will break it up into
an array of strings separated by the vertical bar possibly with adjacent whitespace, 30.6 will assign the
respective elements of the array to individual scalar variables, and 30.7 will modify multi-word county names
using the despace() subroutine, (19), to replace internal whitespace by single underline characters.

But now we have to decide how to arrange these items into a data-structure within our program, so that
later parts of the program can look the information up.

Probably we shall still want to implement the table as an array, rather than a hash with county names as
keys – it would not be specially convenient to use a string like
Cambridgeshire_and_Isle_of_Ely for lookup purposes. But, now we know about hashes, we
can choose whether we want the table to be an array of arrays, or an array of hashes. If it is an array of
arrays, then the rows are indexed by integers 0 to 45 and the columns by integers 0 to 3:

print "$counties[1][0]\n";

Berkshire

print "$counties[1][2]\n";

463830

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

98

Hash tables

If on the other hand we go for an array of hashes, each row of the array will be a little four-element hash,
which could be indexed with the keys name, pop, acreage, rValue:

print "$counties[1]{name}\n";

Berkshire

print "$counties[1]{acreage}\n";

463830

(Provided our hash keys are all-letter strings like name or acreage, we don’t need to surround them
with quotation marks inside the curly brackets – though if, for instance, we used a two-word string with a
space in the middle as a key, this would need quotation marks.)

With only four elements, the lookup efficiency of a hash is irrelevant. But it takes a burden off the
programmer if he does not need to remember that acreage is in column 2, and so on. Some Perl
programmers would argue that this is really the central advantage of hashes, more significant in practice
than the point about efficiency of lookup in large tables.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Perl for Beginners

99

Hash tables

17.5 Hashes versus references to hashes

The same point we saw earlier about arrays of arrays only seeming in Perl to be arrays of multi-item
elements applies equally to arrays of hashes (and to hashes of arrays, hashes of hashes, …). So the code
which populates our enlarged @counties array with data will need to insert values one cell at a time:

$counties[$i]{name} = $name;
$counties[$i]{pop} = $population;
$counties[$i]{acreage} = $acreage;
$counties[$i]{rValue} = $rateable_value;

That is, after the open statement which makes INFILE the handle for our file of data, the program will
run like this:

(31)

1 $i = 0;
2 while ($line = <INFILE>)
3 {
4 chomp($line);
5 $line =~ s/^\s*(\S.*\S)\s*$/$1/;
6 @items = split(/\s*\|\s*/, $line);
7 ($name, $population, $acreage, $rateable_value) = @items;
8 $name = despace($name);
9 $counties[$i]{name} = $name;
10 $counties[$i]{pop} = $population;
11 $counties[$i]{acreage} = $acreage;
12 $counties[$i]{rValue} = $rateable_value;
13 ++$i;
14 }
15 close(INFILE);

We could replace 31.7–8 with code that turns the items found in the current input line into a four-element
hash (using the symbol => to link key/value pairs in a list), like this:

%countyHash = (name => despace($name), pop => $population, acreage
=> $acreage, rValue => $rateable_value);

but, if we were to do that, we could not go on to replace 31.9–12 by a single statement:

%counties[$i] = %countyHash; #WON’T WORK!

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

100

Hash tables

Likewise, if we need all the data about a given county, we shall need to extract it from the hash one item
at a time:

$name = $counties[$i]{name};
$population = $counties[$i]{pop};
 etc.

But, provided we respect this constraint, we can forget that appearance is different from reality. (And,
once you go on in due course to learn about references, you will be able to escape from the constraint.)

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

